Departamento de Matemáticas, Cinvestav IPN Examen de Admisión a la maestría, 4 de Diciembre de 2009

Instrucciones: Resuelva **todos** los ejercicios de las secciones 1 y 2 y los que pueda de la sección 3. Justifique sus respuestas.

1 Algebra Lineal

1. Considere el producto interno usual en \mathbb{R}^n , $\langle u, v \rangle$. Pruebe que para toda matriz $n \times n$, $A \in M_n(\mathbb{R})$ y vectores $u, v \in \mathbb{R}^n$ se cumple:

$$\langle Au, v \rangle = \langle u, A^t v \rangle,$$

donde A^t es la matriz transpuesta de A.

- 2. Una matriz $A \in M_n(\mathbb{R})$ se dice **ortogonal** si $AA^t = I_n$. Pruebe que las siguientes condiciones son equivalentes
 - (a) A es ortogonal.
 - (b) $\langle Au, Av \rangle = \langle u, v \rangle, \quad \forall u, v \in \mathbb{R}^n.$
 - (c) $||Au|| = ||u||, \quad \forall u \in \mathbb{R}^n.$
 - (d) Las columnas de A forman una base ortonormal de \mathbb{R}^n .

Dé un ejemplo de una matriz ortogonal 2×2 que no sea la matriz identidad.

3. Sea A una matriz con valores propios distintos $\lambda_1, \lambda_2, \lambda_3$ y vectores propios correspondientes v_1, v_2, v_3 . Demuestre que $\{v_1, v_2, v_3\}$ es un conjunto linealmente independiente.

2 Cálculo

1. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones diferenciables de orden n. Pruebe que la n-ésima derivada del producto está dada por la fórmula:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)},$$

donde $f^{(k)}$ representa la k-ésima derivada de f y $f^{(0)} = f$.

2. Demostrar que los valores de las sigs. expresiones no dependen de x.

(a).
$$\int_0^x \frac{1}{1+t^2}dt + \int_0^{\frac{1}{x}} \frac{1}{1+t^2}dt$$
 (b). $\int_{-\cos x}^{\sin x} \frac{1}{\sqrt{1-t^2}}dt$.

3. Determine para que valores de α la siguiente serie es convergente

$$\sum_{n=0}^{\infty} e^{\alpha n}.$$

3 Problemas Adicionales

- 1. Sea $O(n) = \{A \in M_n(\mathbb{R}) \mid AA^t = I_n\}$ el conjunto de matrices ortogonales $n \times n$.
 - (a) Pruebe que O(n) es un grupo con producto de matrices.
 - (b) Pruebe que con la topología inducida por $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$, O(n) es compacto.
 - (c) Pruebe que si $A \in O(n)$ entonces $det(A) = \pm 1$.
 - (d) Sea $SO(n) = \{A \in O(n) \mid \det(A) = 1\}$ el conjunto de todas las rotaciones en \mathbb{R}^n (también conocido como el grupo ortogonal especial). Pruebe que SO(n) es conexo.
- 2. Encuentre el valor de la integral

$$\int_{-\infty}^{\infty} e^{-x^2} dx.$$

3. Sea E un espacio vectorial normado sobre $\mathbb C$. Demuestre que la norma $\|.\|$ proviene de un producto escalar si y sólo si satisface la identidad del paralelogramo

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in E.$$